

Wie viel Solar kann meine Wohnung, wie viel kann mein Haus?

Initiiert und organisiert von:

Unterstützt von:

Wie viel Solar kann meine Wohnung, wie viel kann mein Haus?

Kiezakademie, Klimafreundliches Stadtparkviertel e.V. i.G., 27.05.2024

Initiiert und organisiert von:

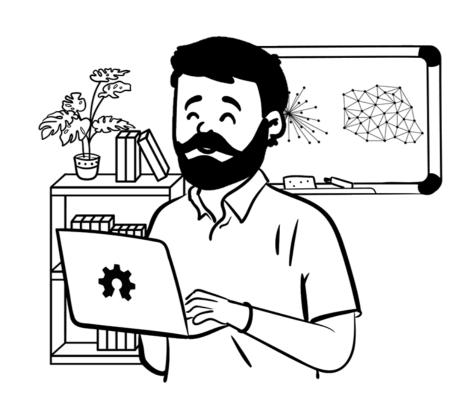
Klimafreundliches Stadtparkviertel Berlin-Steglitz

Gutes Klima durch Miteinander!

Unterstützt von:

Ablaufplan

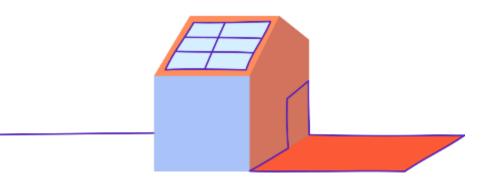
- 1. Begrüßung
- 2. Status Quo
- 3. Grundlegendes für Eigentümer:
 - Anlagengröße, Förderprogramme und Beratung
 - Betriebsarten
- 4. Technischer Aufbau Balkonkraftwerk
- 5. Einflussfaktoren des Energieertrags
- 6. Finanzieller, ökologischer und sozialer Nutzen
- 7. Rechtliche Voraussetzungen
- 8. Fazit und Ausblick
- 9. Gespräch und Fragen: Individuelle Aspekte



Quelle: 2030planb.de

Paul J.

- Solarbotschafter, <u>PacksDrauf</u>-Kampagne des <u>SFV</u>
- Mitglied und Selbstbau-Helfer, BürgerEnergie Berlin eG
- Solar Energy and Electrical System Design, University of Buffalo
- Mitglied, <u>BalkonSolar e.V.</u>
- Organisationsteam, <u>Solarcamp Berlin</u>
- Sprecher AG Energie, KliV Steglitz e.V. i.G.

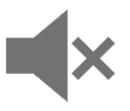

Dennoch: Laie!

Keine Haftung; Änderungen vorbehalten.

Status Quo

Die Welt, Deutschland und das Stadtparkviertel

Warum Photovoltaik?

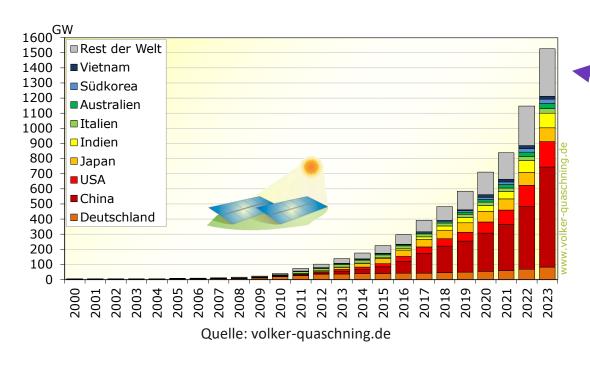

Klimaschutz!

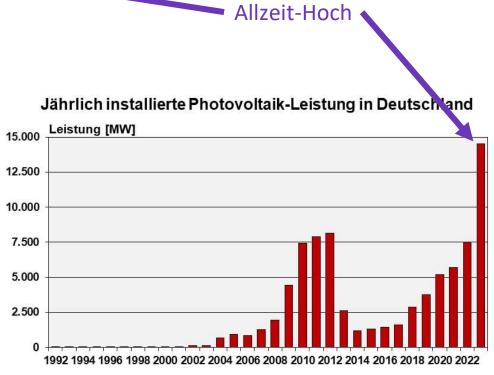
Unabhängigkeit von Energieimporten

Energiewende "selbst" in die Hand nehmen

Leise und dezentrale Energieerzeugung

Die Sonne schickt keine Preiserhöhungen


Weniger Hitze im Dachgeschoss



Bewährtes, langlebiges und robustes Produkt

Solarausbau weltweit

Quelle: IWR, Daten: IWR, Bundesnetzagentur, MaStR, Stand: 15.01.2024 www.solarbranche.de

© IWR, 2024

Situation in Deutschland


- > 480.000 angemeldete Balkonkraftwerke, deutlich mehr unregistriert
- Installierte Leistung bereits 1 GWp (laut Balkon.Solar)

Solarpotential im Stadtparkviertel

25%

- ➤ Karte mit Solarpotential des Stadtparkviertels: Überschlagsrechnung zur Energieausbeute auf prioritär geeigneten Dächern (Quelle: Energieatlas Berlin)
- ➤ Beispielrechnungen im

 Markuskiez ergeben: Häuserblöcke
 könnten im Jahresmittel etwa 25

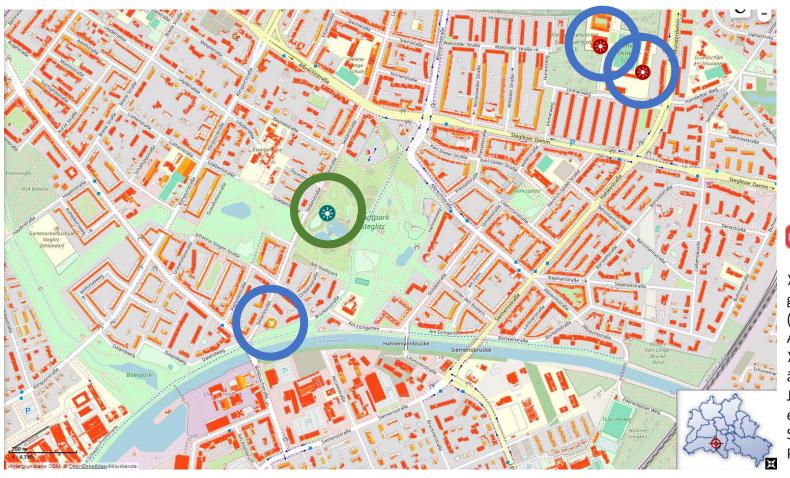
 Prozent des eigenen

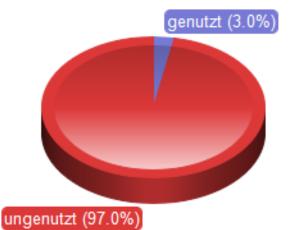
 Stromverbrauchs decken

 ➤ Balkonkraftwerke und
- Fassadensolar können den Selbstversorgungsgrad weiter erhöhen.

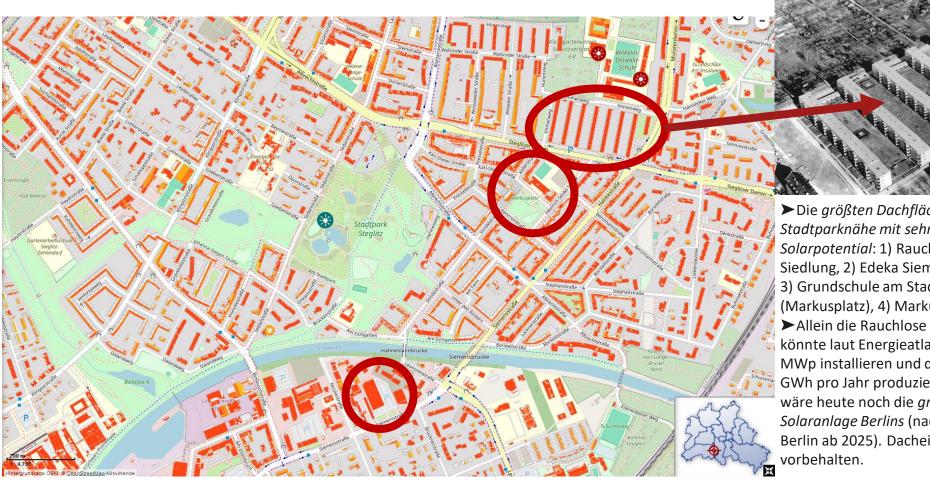
Existierende PV-Anlagen im Stadtparkviertel

Auszug aus dem Marktstammdatenregister (Stand: 17.05.2024):


- 99 angemeldete Solaranlagen, erste Inbetriebnahme: PV-Anlage Planetarium am Insulaner (01.09.2000)
- Aktuell größte kommunale Anlage: OSZ Wilhelm-Ostwald-Schule, 150 kWp
- Aktuell größte Anlage eines Unternehmens: ALDI Bergstr./Hesestr., 62 kWp
- Aktuell größte Anlage auf Wohnung: WEG Sedanstr. (Hochhaus am Fußgängerüberweg B'buschstraße/ am Radschnellweg), 32 kWp
- Seit Jahresanfang: 20 Neu-Inbetriebnahmen (Gesamtbruttoleistung 47,5 kWp), allerdings mehrheitlich Balkonsolar

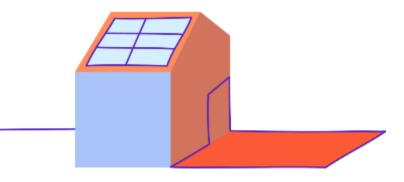


Existierende PV-Anlagen im Stadtparkviertel



- ➤ Reale Deckungsrate im gesamten Bezirk bis Ende 2024 (Quelle: Energieatlas Berlin, Stand: April 2024)
- ➤ Karte des Stadtparkviertels: Zwei ältere Anlagen auf dem Dach des Jugend- und Oberstufenzentrums, eine Mieterstrom-Anlage in Stadtparknähe, 24 Kleinanlagen in PLZ 12167 (z.B. Balkonsolar)

Die größten Einzel-Potentiale im Kiez



► Die größten Dachflächen in Stadtparknähe mit sehr gutem Solarpotential: 1) Rauchlose Siedlung, 2) Edeka Siemensstraße, 3) Grundschule am Stadtpark (Markusplatz), 4) Markuskirche ➤ Allein die Rauchlose Siedlung könnte laut Energieatlas mehr als 1 MWp installieren und damit über 1 GWh pro Jahr produzieren. Das wäre heute noch die größte Solaranlage Berlins (nach Messe Berlin ab 2025). Dacheignung

Dach- und Fassaden-Solar

Exkurs für Eigentümer:innen

Exkurs für Dach-PV und Eigentümer I

- Wegfall bürokratischer Hürden:
 - Kauf mehrwertsteuerbefreit,
 - einkommenssteuerfrei bis 15 kWp je Wohnung und 30 kWp pro Einfamilienhaus
 - keine Baugenehmigung
- Eigene Vorrecherche durch <u>Energieatlas</u> und diverse <u>Ertragsrechner</u>
- Verschiedene Betriebsmodelle:
 - Kauf von Anlage und Installation
 - Verpachtung der Dachfläche
 - Gemeinsame Körperschaft
- Wichtig bei Beauftragung: Zahlung nach Fertigstellung, allenfalls Nachweis leisten!

Exkurs für Dach-PV und Eigentümer II

- Solarzentrum Berlin: 60 min kostenlose Erstberatung
- BürgerEnergie Berlin eG: kostenlose Beratung und gemeinschaftlicher Selbstbau bei Beitritt
- Zweihorn Energy/Plan B 2030: Verlosung von 50 Balkonkraftwerken inkl. Anbringung an Vermieter
- Auch wichtig ins Gespräch kommen: Gemeinsame Anlage, Mieterstrom, Balkonsolar-Konditionen

16

Richtige Auslegung der PV-Anlage

- möglichst groß, Dachfläche ausnutzen
- EE-Anforderungen bei Neubau und Heizungstausch beachten
- dadurch geringere Kosten pro kWp
- auch "schlechtere" Dachseite pr
 üfen, Kosten steigen z.B. nur um 60%, Ertrag aber um 70%
- Wartungskosten fallen weniger ins Gewicht

Schon bei der Planung der Anlage sollten zukünftige Mehrverbräuche (z.B. E-Auto und Wärmepumpe) mitgedacht werden.

www.packsdrauf.solar Bild: Ulrich Böke

Typische Investitionskosten

• Skalierungseffekt: je größer die Anlage, desto preiswerter je kW

Installierte Leistung	Investitionskosten			
3 kWp	6.000 bis 9.000 €			
5 kWp	8.000 bis 13.000 €			
10 kWp	15.000 bis 20.000€			

von 5 kW auf 10 kW nur etwa 60% teurer

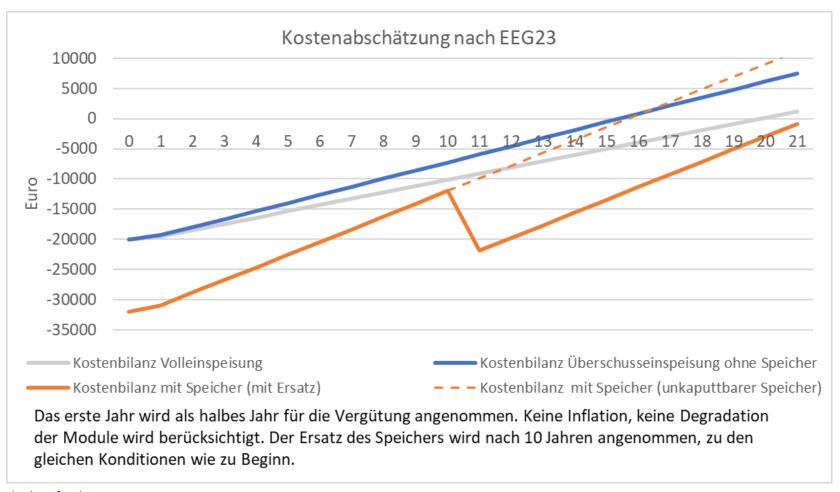
Die Nordseite direkt mit errichten zu lassen kann wirtschaftlich sinnvoll sein, da die Nordseite ca. 70% Ertrag einer Südseiten-Anlage hat.

Einspeisevergütung nach EEG23

Einspeisevergütungssätze für Photovoltaik-Dachanlagen						
Installierte Leistung	EEG 2023* (ab 01.02.24)					
	Überschusseinspeisung	Volleinspeisung				
≤ 10 kW	8,11 ct/kWh	12,87 ct/kWh				
≤ 40 kW	7,03 ct/kWh	10,79 ct/kWh				
≤ 100 kW	5,74 ct/kWh	10.79 ct/kWh				

^{*}Der Netzbetreiber-Abzug nach \$53 EEG von 0,4 cent ist in diesen Werten bereits abgezogen

Die Einspeisevergütungen für Anlagen >10kW werden gestaffelt berechnet. Auf der Webseite des SFV gibt es ein Tool zur Berechnung der Vergütung je nach Anlagengröße: https://www.sfv.de/solaranlagenberatung/eeg-verguetungen


Beispiel: Anlage mit 12 kWp

Vergütung: (10/12 * 8,11) + 2/12 * 7,03 = 7,93 ct/kWh

Rentabilität selber bewerten – Beispiel

10,0 kWp Anlage zum Preis von 20.000€ mit 10 kWh Speicher für 12.000€

Eckdaten:

- 10,0 kWp für 20.000€ (reales Angebot)
- 1% Betriebskosten für Versicherung, Zähler etc.
- 10,0 kWh Speicher für
 12.000€
- Ersatz des Speichers nach 10 Jahren Laufzeit
- Konstanter Strompreis
 von 0,35€/kWh

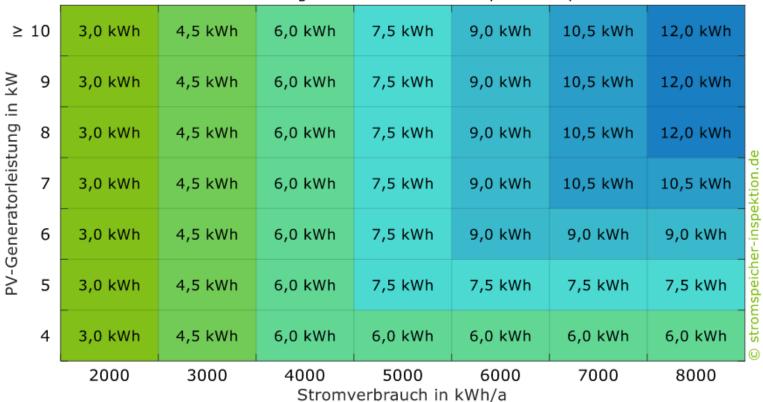
www.packsdrauf.solar Datenquelle: SFV

Förderprogramme

- Von Stadt zu Stadt unterschiedlich
- Beantragung entweder vor
 Auftragsvergabe oder nach Fertigstellung
- Frühzeitiges Informieren ist wichtig!

Eine Übersicht über verschiedene Förderprogramme je nach Bundesland gibt es auf der SFV-Homepage:

www.sfv.de/solaranlagenberatung/foerderprogramme


Teilen Sie uns gerne mit, wenn Förderprogramme in Ihrer Stadt fehlen oder nicht mehr aktuell sind!

Dimensionierung des Speichers

Viele hilfreiche Tipps gibt es in der Stromspeicher-Inspektion der HTW Berlin

Bild 34 Empfohlene Obergrenze der nutzbaren Speicherkapazität in Einfamilienhäusern, die von der Größe der PV-Anlage und von der Höhe des jährlichen Stromverbrauchs abhängt.

Sonderfall: Not & Ersatzstrom

 Um die Anlage bei Netzausfall weiter betreiben zu können, muss der Wechselrichter schwarzstartfähig sein. Ist eine solche Installation vorgesehen?

Notstromfähiger Wechselrichter

- Separate Steckdose
- Einzelner Stromkreis
- Geringerer Installationsaufwand
- Nur ausgewählte Geräte werden betrieben
- Kosten 300-500€

Ersatzstromfähiger Wechselrichter

- Vollständige Versorgung über drei Phasen
- Umschaltvorrichtung notwendig
- Höherer Installationsaufwand
- Kosten: 1500-3000€

Angebote einholen: Gute Anfragen für Gute Angebote

- Regionale Fachfirmen wählen. Eine Liste mit Solarteur:innen gibt es hier: www.sfv.de/publikationen/sachverstaendige
- genaue Adresse und Baujahr angeben (so können Anbieter das Haus auf Google-Maps / im Solarkataster finden), Blitzschutz vorhanden?
- gewünschte Dachflächen benennen für Module, optional auch "schlechtere" Dachseite anfragen
- Fotos vom Dach (Garten und Straßenseite)
- Foto vom offenen Zählerkasten
- Batterie (ja, nein, optional), möglichst gewünschte Größe in kWh mit angeben (z. B.: www.verbraucherzentrale.nrw/solarrechner)

Gute Anfragen sind bei aktuell hohen Marktdruck immer wichtiger!

Wie erkenne ich ein gutes Angebot?

- Auf lokale Anbieter setzen
- Entspricht das Angebot den Vorstellungen?
 - Dach voll belegt?
 - Mit Speicher oder Ohne?
 - Optische Vorlieben oder bestimmte Herstellerwünsche?
- Kosten transparent aufgeschlüsselt und einzeln bepreist?
 - Ein Kostenvergleich mit den gleichen Komponenten im Internet kann helfen
- Installationskosten in €/kWp errechnen und vergleichen
 - Zwischen 1500-2200€/kWp sind aktuelle Richtwerte (ohne Speicher)
 - Speicher separat berechnen: 600-1000€/kWh
- Angemessene Zahlungsbedingungen?
 - Weitere Infos hier: https://www.sfv.de/verbraucherschutz-bei-pv-investitionen

Der SFV hilft weiter:

Angebotsprüfung von bis zu 2 Angeboten Für Mitglieder kostenlos oder auf Rechnungsbasis

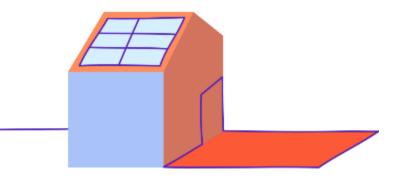
https://www.sfv.de/
solaranlagenberatung
/angebotspruefung

25

8 Schritte zur eigenen Anlage

- 1. Idee und Erst-Information (heute)
- 2. Ertragsabschätzung, Möglichkeiten & Aufwand
- 3. Angebote von zwei/mehreren Anbietern
- 4. Förderung beantragen (z.B. IBB Solar Plus)
- Kaufvertrag mit Inbetriebnahmedatum und Komplettpreis
- 6. Klärung Steuerfragen & Versicherungsschutz
- 7. Installation der Anlage
- Anmeldung bei Netzbetreiber, Marktstammdatenregister und ggf. Finanzamt

Der SFV steht Ihnen gerne für Infos und Beratung zur Verfügung. Infos unter:


www.sfv.de/solaranlagenberatung

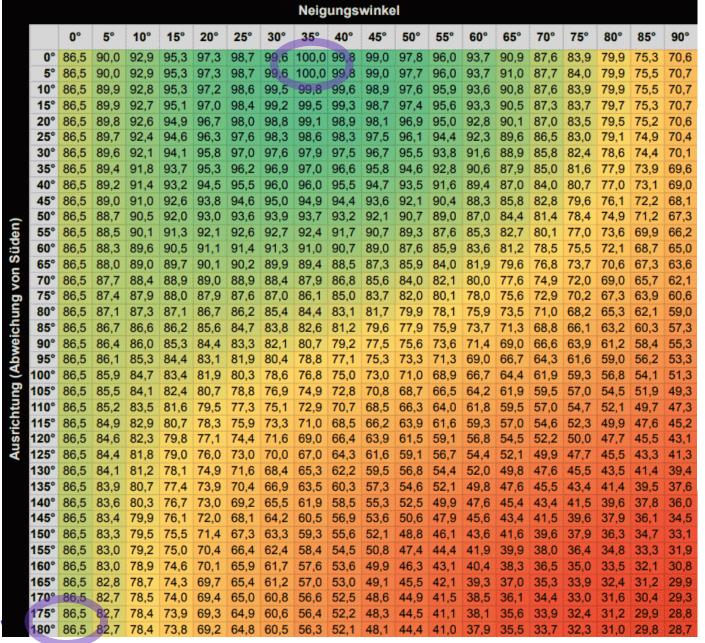
www.packsdrauf.solar Foto: SGV Aachen

Was ist (Balkon-)Solar

Grundlagen und technischer Aufbau

Sonderfall: Stecker-Solargeräte (Balkon-Solar)

- Bezeichnung als Gerät, da es wie ein Staubsauger oder ein Wasserkocher in Steckdosen eingesteckert werden kann.
- Einfache Montage am Balkon oder im Garten möglich
- Maximal zulässig sind Module mit insgesamt 2000 W mit einem Wechselrichter von maximal 800 W
- Anmeldung im <u>Marktstammdatenregister</u> erforderlich
- Zulässigkeit von Schuko-Stecker oder Wieland-Stecker in Klärung (Schuko z. Zt. geduldet, VDE-Norm in Überarbeitung)
- Förderung über Investitionsbank Berlin mit bis zu 500 €



Unterschied Stecker-Solargerät zu PV-Anlage

Stecker-Solargerät	Photovoltaikanlage
Einfach einzustecken	Feste Verkabelung und
	Leistungsverlegung durch das Haus
Geräteanschluss mit einfach	Fester Anschluss durch einen Elektro-
bedienbarer Steckverbindung	Installateur
Anschluss direkt an Endstromkreis	Anschluss an die zentrale
	Stromverteilung im Haus
Leistung bis 600 800 W (2000 Wp brutto)	Leistung größer als 600 800 W
Strom wird weitgehend im Haus	Strom wird auch (oder überwiegend) ins
verbraucht	Netz eingespeist
Einspeisevergütung meist verzichtbar	Einspeisevergütung lohnt sich

PV-Ertrag in Abhängigkeit der Dachneigung und Ausrichtung

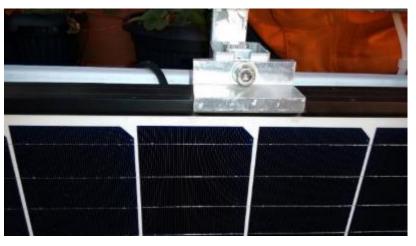
*Erträge sind Abhängig von der (Dach-)Neigung.

Bild: VZ NRW

Aus: Konrad Mertens, Grundlagen der Photovoltaik

Anbieter (Auswahl)

ECOFLOW



Stecker-Solargeräte (Balkon-Solar): Haupt-Bestandteile

Modul

Voc < Max Input Voltage Isc (Modul) < Isc (WR)

Befestigungsklemme

Wechselrichter

Ggf. Fensterdurchführung, Stromzähler, Schuko-Einspeisekabel

Fotos: Helge Pfingst (Mitte und links), Sonnenrepublik (oben links/rechts), Hoymiles, AVM Fritz! (bd. unten rechts)

(Starre) Solarmodule

Ein Solarmodul ist eine Anordnung mehrerer Solarzellen zu einer Einheit

• Typische Größe: 1,5-2 m², ca. 1,70x1,15 m

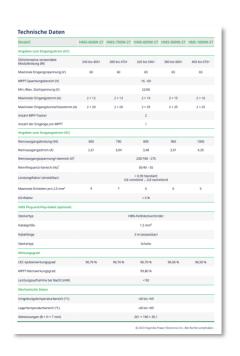
Schrägdach ca. 5m² und Benötigte Fläche:

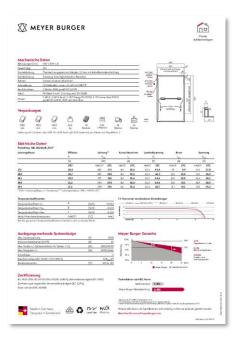
Flachdach ca. 8-10 m² je kWp

 Typische Leistung: oft zwischen 390 - 430 Watt

- 3 Typen von Zellen:
 - Monokristalline Zellen (schwarz)
 - Polykristalline Zellen (blau-schimmernd)
 - amorphe Zellen (dunkelblau)
- Rückseite aus
 - Glas: längere Lebensdauer
 - Folie: billiger
- Energie-Rücklauf-Zeit eines Moduls:
 - Heutzutage 1-2 Jahre

Hier: Halbzellen-Modul


- besserer Wirkungsgrad
- bei Teil-Verschattung geringere Auswirkung auf den Ertrag



Elektrotechnische Auslegung und Konfiguration I

- Wechselrichter muss maximale Leistung (Watt, Wp) der Solarpanels genügen <u>und</u> entsprechender Ausgangsspannung (Volt, V) und Ausgangsstrom (Ampere, I) der Panele
- Bei einzeln angeschlossenen Modulen vom Typenschild ableitbar; mehrere zusammengeschaltete Panele ändern diese Angaben nochmal
- Häufige Fehlerquelle bei Konfiguration! Am besten im Einzelfall zu besprechen
- Ggf. Fachpersonal konsultieren

Für die Modul- und Wechselrichterauswahl: Voc < Max Input Voltage Isc (Modul) < Isc (WR)

Elektrotechnische Auslegung und Konfiguration II

Elektrische Daten¹

Produkttyp: MB_B120AyB_XXX*

Leistungsklasse	Effizienz	Leistun	g**	Kurzsch	lussstrom	Leerlauf	spannung	Str	om	Span	nung
	η	P _{max}		_	sc		/ _{oc}	I _m	pp	V	трр
	[%]	[W]			[A]		[V]	[/	A]	[V]
	STC ²	NMOT ³	STC	NMOT	STC	NMOT	STC	NMOT	STC	NMOT	STC
375	20,4	283	375	8,5	10,6	42,2	44,4	7,9	9,9	35,7	37,8
380	20,7	287	380	8,5	10,6	42,2	44,5	8,0	10,0	36,1	38,2
385	20,9	291	385	8,5	10,6	42,3	44,6	8,0	10,0	36,4	38,5
390	21,2	294	390	8,5	10,6	42,4	44,6	8,0	10,1	36,7	38,9
395	21,5	298	395	8,5	10,6	42,4	44,7	8,1	10,1	37,0	39,2
* XXX = Leistungsklasse, y = Steck	ertyp ** Leistungstoleranz -0W/+	5W für STC									

Für die Modul- und Wechselrichterauswahl: Voc < Max Input Voltage Isc (Modul) < Isc (WR)

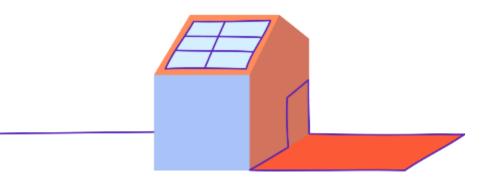
Kennzahlen Solarmodul

Leerlaufspannung: 42,2 (verschattet)...44,5 (sonnig) V

Kurzschlusstrom: 8,5 (verschattet)...10,6 (sonnig) A

Kennzahlen Wechselrichter (müssen größer sein)

Maximale Eingangsspannung: 65 V Maximaler Eingangsstrom: 14 A


Idealerweise liegt Modul-Spannung auch im MPPT-Spannungbereich!

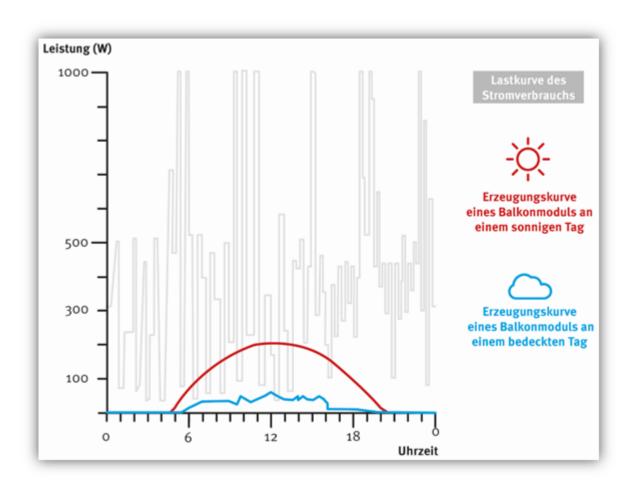
Modell	HMS-600W-2T	HMS-700W-2T	HMS-800W-2T	HMS-900W-2T	HMS-1000W-27
Angaben zum Eingangsstrom (DC)					
Üblicherweise verwendete Modulleistung (W)	240 bis 405+	280 bis 470+	320 bis 540+	360 bis 600+	400 bis 670+
Maximale Eingangsspannung (V)	60	60	65	65	65
MPPT-Spannungsbereich (V)			16 - 60		
Min./Max. Startspannung (V)			22/60		
Maximaler Eingangsstrom (A)	2 × 12	2 × 13	2 × 14	2 × 15	2 × 16
Maximaler Eingangskurzschlussstrom (A)	2 × 20	2 × 20	2 × 25	2 × 25	2 × 25
Anzahl MPP-Tracker			2		
Anzahl der Eingänge pro MPPT			1		

PAUSE


Praktische Demonstration (15 min)

Stecker-Solargeräte (Balkon-Solar)

Modul - schräg an Hauswand befestigt

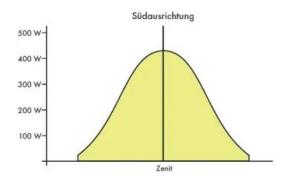

Modulrückseite mit Wechselrichter

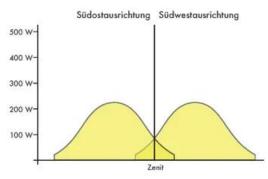
www.packsdrauf.solar Fotos: Pia Anderer 37

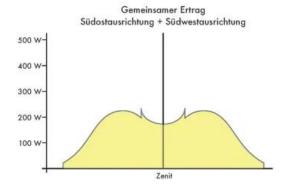
Lastprofil

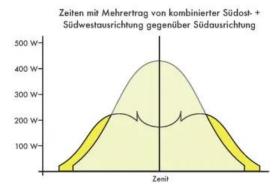
- Grundlast in Miethaushalten zwischen 50 bis 100 Watt
- Zeitweise auf 200 bis 600 Watt steigender Verbrauch bei Anwesenheit
- Kurze Verbrauchsspitzen von 1.000 bis 3.000 Watt über Sekunden und Minuten
- Stecker-Solargeräte decken vor allem den Grundverbrauch
- Eigenverbrauchswerte von 60 bis 90 % möglich

Lastprofil


- Grundlast in Miethaushalten zwischen 50 bis 100 Watt
- Zeitweise auf 200 bis 600 Watt steigender Verbrauch bei Anwesenheit
- Kurze Verbrauchsspitzen von 1.000 bis 3.000 Watt über Sekunden und Minuten
- Stecker-Solargeräte decken vor allem den Grundverbrauch
- Eigenverbrauchswerte von 60 bis 90 % möglich






Lastprofil

- Individuelle Abstimmung beliebig möglich
- "Standby-Verbrauch" senken (Stromsparen)
- Energiespeicher nutzen
- Ausrichtung und Verschaltung der Module optimieren
- Eher für Personen mit Vorkenntnissen oder zur Abwägung verschiedener Standorte
- u.U. genügt eine Standardkonfiguration

www.packsdrauf.solar Graphik: Balkon.Solar e.V. 40

Braucht es den Speicher, die Akkubox?

- Inselbetrieb vs. Netzbindung
- Idealerweise Eigennutzung (z.B. Grundlast)
- Einspeisung bisher unrentabel bzw. "egal"
- Balkonsolar kann mit Akkubox gekoppelt werden, auch im Netzbetrieb (weitere Komponenten!)
- Allerdings: Akku ist das umweltschädlichste am Solarbetrieb (und selten rentabel)
- Kurzlebigstes Teil des Balkonkraftwerks
 Module (20...30) >> Wechselrichter (15...10) > Speicher (10...6 Jahre)
- Eher nicht nutzen, wenn nicht nötig
- Bei haus- oder quartiersweiten Anlagen eher sinnvoll, um Eigenverbrauch zu steigern

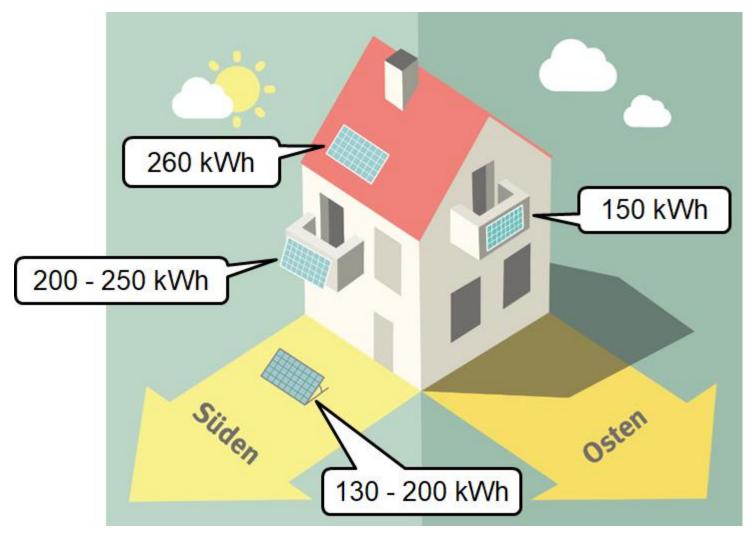


Foto (unten): Alexander Savin (Wikmedia, Art Libre License)

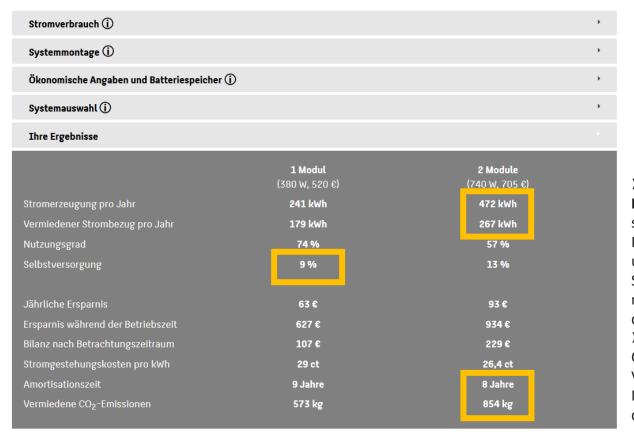
Was bringt ein 300 W-Modul?

Nutzen - Kosten - Beispielrechnung

- 300 Watt-Solarmodul
 - Stromproduktion 200 kWh pro Jahr
 - davon 150 kWh /Jahr Verbrauch im Haushalt
 - Einsparung pro Jahr
 150 kWh x 40 Cent / kWh = 60 €
- Nach 10 Jahren 600 € (je nach Strompreis)
- Einspeisevergütung lohnt sich hier kaum (50 kWh x 7,0 Cent = 3,50 € pro Jahr)
- Kosten ca. 500 €

Zur Abschätzung des Eigenverbrauchs kann der Unabhängigkeitsrechner der HTW-Berlin genutzt werden:

https://solar.htw-berlin.de/rechner/stecker-solar-simulator/



Rechenbeispiel

Stecker-Solar-Simulator

➤ Rechenbeispiel für eine

Balkonsolaranlage (südseitig,
suboptimale Anbringung, 2Personen-Haushalt, leicht
unterdurchschnittlicher
Stromverbrauch, ohne Speicher)
mit dem Stecker-Solar-Simulator
der HTW Berlin
➤ Stromersparnis ist signifikant,
CO₂-Ersparnis am ehesten durch
Verwendung von GebrauchtModulen; rechnet sich am ehesten
durch Förderantrag

45

Baugenehmigung / Überkopfverglasung

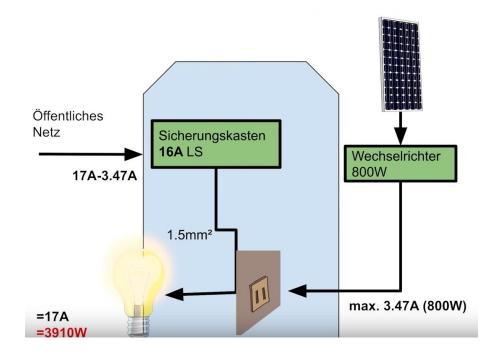
- These: "Über 4 m Höhe darf ich nur noch flexible Solarmodule anbauen."
- Falsch (in Berlin).
- Derartige Regelungen sind in der Baugesetzgebung der Länder geregelt. In Berlin sind Solaranlagen baugenehmigungs- und weitgehend beschränkungsfrei (Ausnahmen: Hochhäuer > 20 m, Denkmäler)
- Für andere Bundesländer lässt das DIBt Solaranlagen als zulässige "Überkopfverglasung" Solaranlagen zu
- Eigenverantwortliche Risikominimierung: Fachgerechte Befestigung, keine überschweren Konstruktionen über Laufwegen oder bei hoher Windlast

Deutsches Institut für Bautechnik

www.packsdrauf.solar Graphik (oben): Rauch Versicherungslösungen

VDE-Norm und Wieland-Stecker

- These: "Für Balkonsolar braucht es eine Wieland-Steckdose – der Fachverband warnt!"
- Nein. Die VDE-Norm schreibt einen Wieland-Stecker noch vor, allerdings ist eine Abweichung gesetzlich geduldet. Zudem wird die Norm gerade überarbeitet. VDE trat selbst für Erweiterung der Bagatellgrenze in Erscheinung.
- Ein Balkonsolargerät funktioniert nicht ohne Netzanbindung und schaltet spätestens nach 0,4 Sekunden nach Entfernen ab. (Ähnliche Dimension wie FI-Schutzschalter, der als sicher gilt)
- VDE-Normentwurf kann z.Zt. online kommentiert werden. Gegenwärtige Diskussionen erscheinen vorrangig als "Interessen- und Kompetenzgerangel".
- Eigenverantwortlich Risikominimierung durch sinnvolle Dimensionierung und stolpersichere Befestigung etc.



Brandrisiko Balkonsolar?

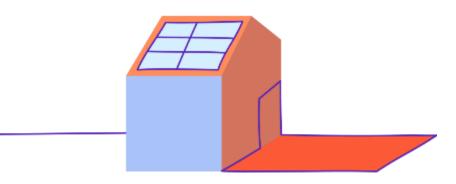
- These: "Balkonsolar belastet Hausstrom und kann Brand auslösen."
- Kaum. Zwar ist das Stromkabeldurchmesser (insb. bei Altbauten) nur für kleine Stromstärken geeignet, diese werden im Regelfall auch mit Balkonsolar nie überschritten. Theoretische Ausnahme: Zig Föne, Wasserkocher etc. gleichzeitig an gleicher Steckerleiste
- Trotz vieler Jahre Balkonsolar ist es noch nie (!) zu einem entsprechenden Brand gekommen.
- Eigenverantwortliche Risikominimierung:
 - Sinnvolle Dimensionierung des Balkonkraftwerks
 - Steckdose nehmen, an deren Leitung noch nicht zu viele große Verbraucher hängen
 - Ggf. durch Fachpersonal Sicherung des Wohnungsanschlusses verkleinern

www.packsdrauf.solar Graphik: Andreas Schmitz/"Akkudoktor"

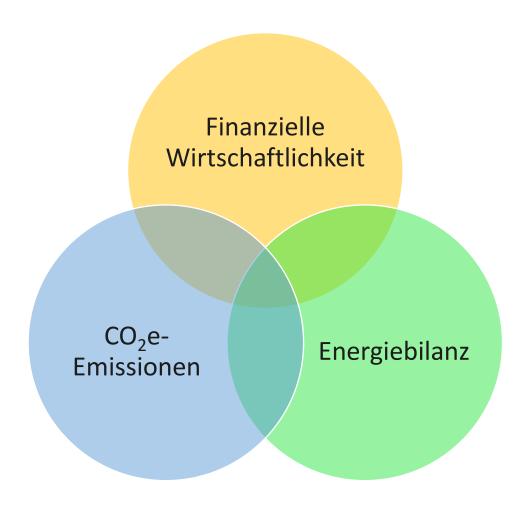
Schritte zum eigenen Balkonkraftwerk I

- Standort identifizieren und Befestigung klären
- Einverständnis von WEG oder Vermieter:in einholen (Musterbriefe vorhanden)
- Passende Anlagen aussuchen/konfigurieren
- Balkon-Solarrechner testen [optional]: https://solar.htw-berlin.de/rechner/stecker-solar-simulator
- Förderantrag stellen (oder Sammelbestellung mit anstoßen) [optional]
- Im Marktstammdatenregister registrieren
- Befestigen/Aufstellen
- > Strom produzieren!
- u.U.: Netzbetreiber neuen Stromzähler einbauen lassen

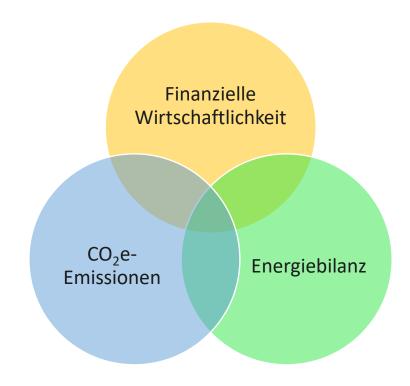
www.packsdrauf.solar Graphik: Balkon.Solar 48


Schritte zum eigenen Balkonkraftwerk II

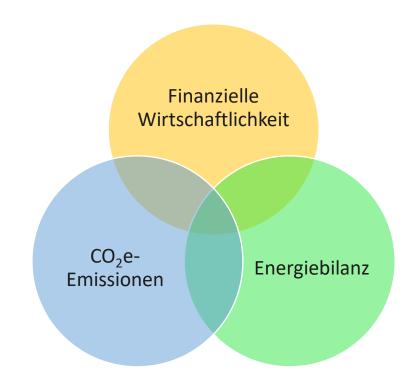
- Außensteckdose? Nicht nötig.
- Wieland-Stecker? Nicht nötig.
- Digitaler Zähler mit Rücklaufsperre? Nicht nötig, wird danach vom Netzbetreiber nachgerüstet.
- Online-Anmeldung im Stammdatenregister?
 Schnell gemacht. (Batteriespeicher extra.)
- Anmeldung beim Netzbetreiber? Entfällt.
- Erlaubnis der Vermieter:in?
 Muss sein, wenn dauerhaft an Balkon oder Fassade befestigt (und bauliche Veränderung nach § 20 (1) WEG) und bei Förderantrag.
- Erlaubnis der Denkmalschutzbehörde? Muss sein, wenn zutreffend für Gebäude.

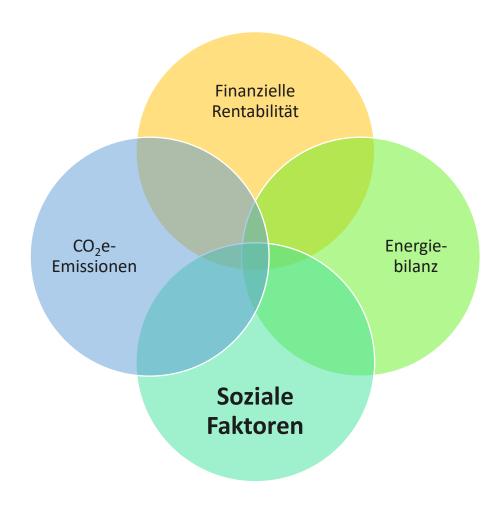

Fazit

Zusammenfassung und nächste Schritte

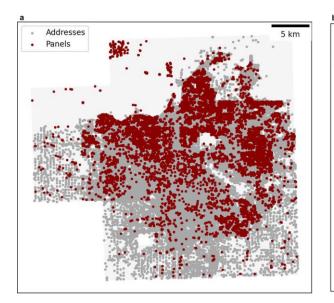

Perspektiven auf Balkonsolar

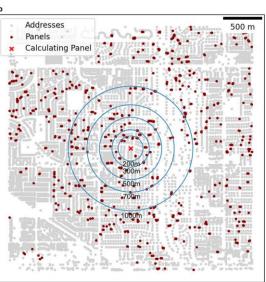
Wirtschaftlichkeit


- Stark lage- und konfigurationsabhängig
- Mit der Deckung des "Standby-Verbrauchs" ist viel gewonnen
- Kombinierbar mit anderen Energiesparmaßnahmen
- Wirtschaftlichkeit sollte nicht die einzige Motivation sein; kann aber ausreichen, wenn gut abgestimmt
- <u>HTW-Balkonsolarrechner</u> für Prognose nutzen
- Mit Förderung oder günstiger Lage u.U. ab dem 2. Jahr Gewinn!


Direkter Klimaschutz und Energieeffizienz

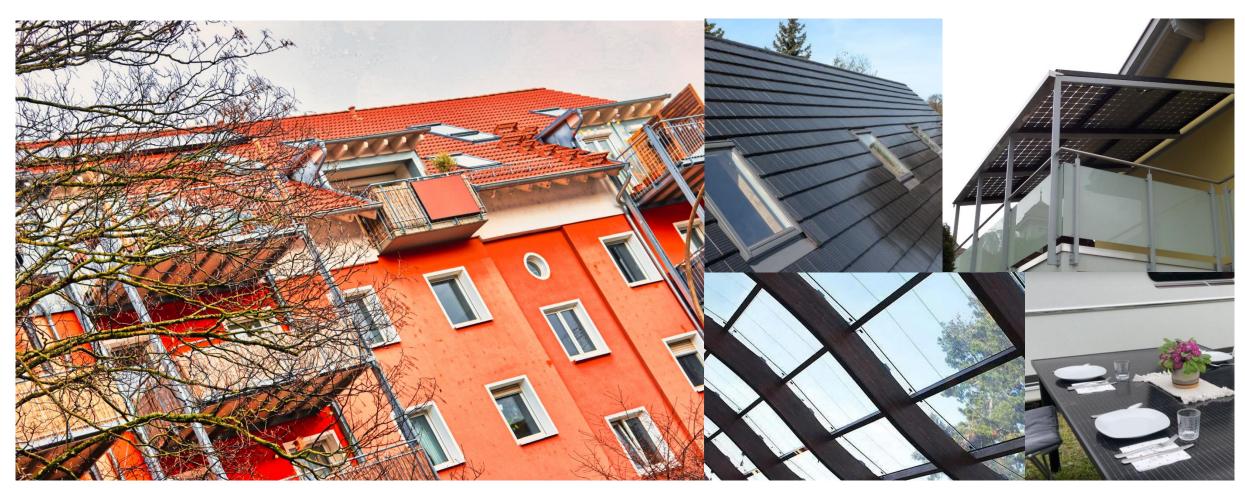
- Besser als fossiler Strommix: Ja!
- Kompensation der CO₂-Emissionen aus der Herstellung etwa in 1...2 Jahren (Solarmodule)
- Je dauerhafter und intensiver die Module genutzt werden, desto größer der Klimaschutz (d.h. dauerhafter, guter Standort)
- Andere Maßnahmen mit schnellerem Effekt (z.B. Ernährungsweise, Ökostrom), aber ohne/weniger "Inspiration" anderer
- Für maximalen Klimaschutz 2nd-Life-Module wählen (funktionierende Module 2. Hand)
- Warten auf neuere Modelle lohnt in keinem Fall; je eher desto besser!


Perspektiven auf Balkonsolar



Soziale Dimension

- Eigene Solaranlage f\u00f6rdert effizientere und bewusstere Energienutzung
- Solar ist "ansteckend": BKW fördern den Nachahmereffekt
- Ausgangspunkt für Fragen zu Autarkie oder Energiegemeinschaften vor Ort

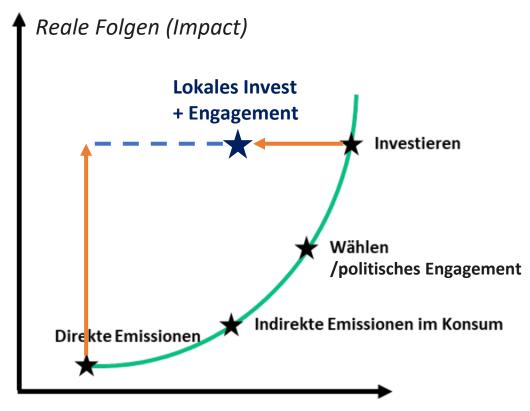


Quelle: Barton-Henry, Wenz & Levermann 2021

Ästhetik I: Finde die Solarzellen!

Bildnachweise v.l.o.n.r.u.: Balkon.Solar, Ingenieur.de, Balkon.Solar, Anker.com, Happy Freizeit/Andreas Stöcklhuber

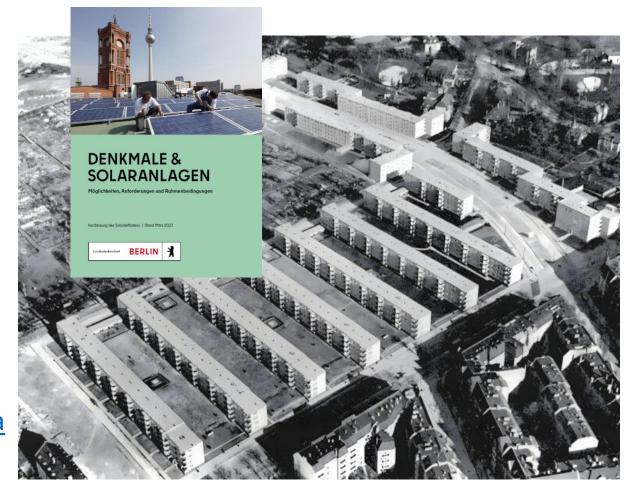
Ästhetik II: Form folgt Funktion (und Folgen)



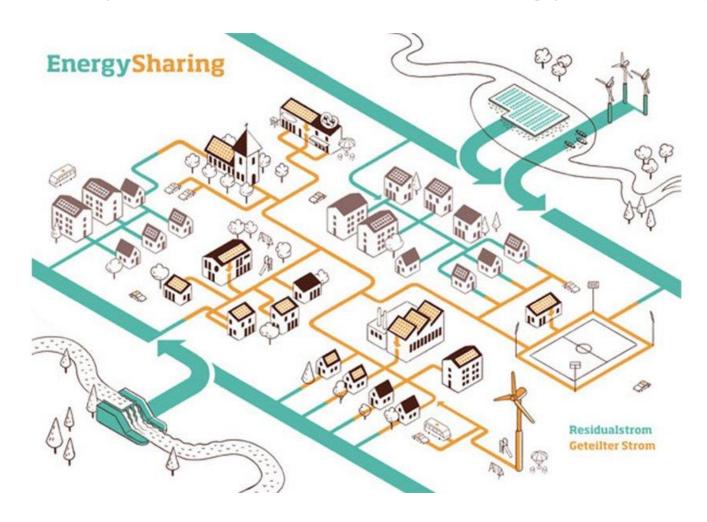
Bildnachweise v.l.o.n.r.u.: ifuerel.de, MAZ-online.de, Tagesspiegel.de, BerndLauter.com, SWR.de, IBC-Solar.de

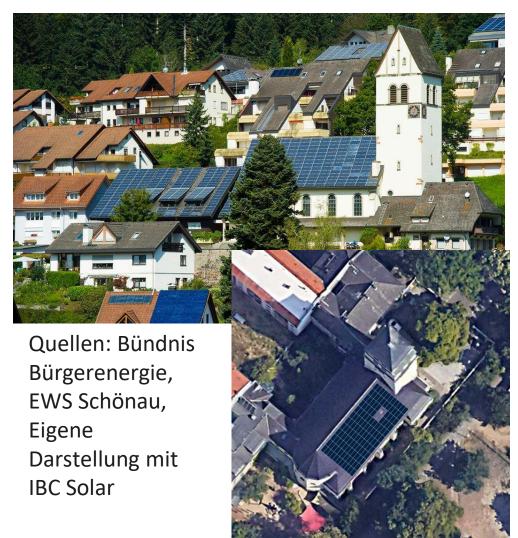
Was es auch braucht

- Balkonsolar in fast allen Fällen sinnvoll: Wirkung kurzfristig vor allem sozial, bei guter Lage auch wirtschaftlich
- Wissen und Bewusstsein für mehr: Dachsolar mit Mieterstrom, gemeinschaftlichem Selbstbau oder WEG-/Eigentümeranlagen
- Individuell mindestens genauso klimaschützend: Wechsel zu
 - "echtem" Ökostrom-Anbieter und
 - nachhaltigem Bankkonto
- Entscheidung nicht zwangsläufig ein "Entweder-oder"


Abstraktheit (direkt-indirekt)

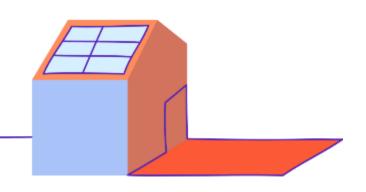
Eigene Darstellung nach 2° Investing Initiative, 2022


Denkmalschutz: Flex-Panel für die Rauchlose Siedlung 2.0?


- Rauchlose Siedlung hat erhebliches Solarpotential (etwa 1 MWp)
- <u>Denkmalschutz</u> ist bei Flachdächern gewährleistet, da <u>Gesamteindruck</u> unbeeinflusst
- Dach-Traglast unklar
- Wir suchen Bewohner:innen und Eigentümer:innen für gemeinsame Umsetzung
- Ultraleicht-Panele: 7,2 kg à 430 Wp (exkl. Wechselrichter)
- Knapp 2 kg/m² extra Dachlast
- https://stadtparkviertel.berlin/projekte/ra uchlose-siedlung-2-0/

Solarpaket II: Zielvision Energy-Sharing?

Was es gibt


- Die Technik, die Menschen, die Hilfe!
- Bei Fragen gerne an AG Energie des Klimafreundlichen Stadtparkviertels wenden:
 - vorstand@stadtparkviertel.berlin
- Balkonsolar-Förderantragssprint mit Plan B am 5.6. in der ufa Fabrik: https://2030planb.de/balkonkraftwerk
- Sammelbestellung von Plan B und Panelretter mit Second-Life-Modulen: https://2030planb.de/bkw-sammelbestellung (bis 31.7.!)

Danke für die Aufmerksamkeit!

stadtparkviertel.berlin – sfv.de – balkon.solar

Jetzt: Platz für Fragen

In Teilnahmeliste eintragen!

Der Solarenergie-Förderverein Deutschland e. V.

- Gemeinnütziger Verein
- Beratung und Förderung der Solarenergie seit 1986
- Kostenlose Beratung für Solaranlagen-Betreiber:innen
- Unabhängig von Wirtschaft und Politik

Politische Arbeit

Öffentlichkeitsarbeit

Solaranlagen-Beratung

Erfolge

- Einspeisevergütung für EE-Strom: "Aachener Modell"
- Klimaklage: Nachbessern der Klimaschutzziele
- Über 30 Jahre Erfahung in der Solaranlagen-Beratung

Klimafreundliches Stadtparkviertel Berlin-Steglitz e.V. i.G.

- Gemeinnütziger Verein in Gründung
- Förderung des Klimaschutzes und Zusammenhalts in Markuskiez und Stadtparkviertel
- https://stadtparkviertel.berlin/

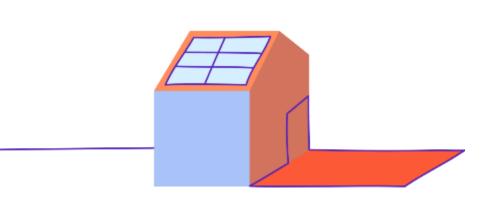
Verschiedenste Arbeitskreise

- Energie, Mobilität,
 Stadtgrün, Rohstoffe,
 Wassernutzung u.v.m.
- Wissen in Wirkung bringen!
- Mitarbeit ohne
 Vereinsmitgliedschaft

Ökologischer Wochenmarkt "LebensMittelPunkt"

- Förderung regionaler und ökologischer Ernährung
- Kooperation mit lokalen Geschäften und Einrichtungen
- jeden 1. und 3. Freitag in den Sommermonaten

Kiezakademie und Veranstaltungen


- Aktuelle Grundlagen, um aktiv werden zu können
- Gemeinsame Projekte mit
 Partnerorganisationen

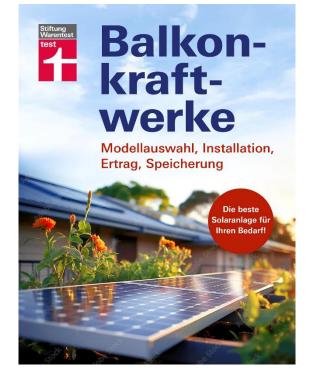
Unterstützung durch Mitgliedschaft

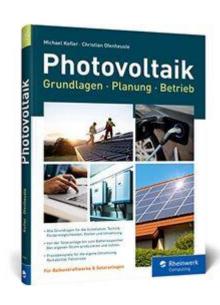
- Mitgliedschaft ab 1 €
 monatlich
- Sonderkonditionen für Familien und Bedürftige
- Vereinsarbeit unterstützen und mitgestalten

Anhang

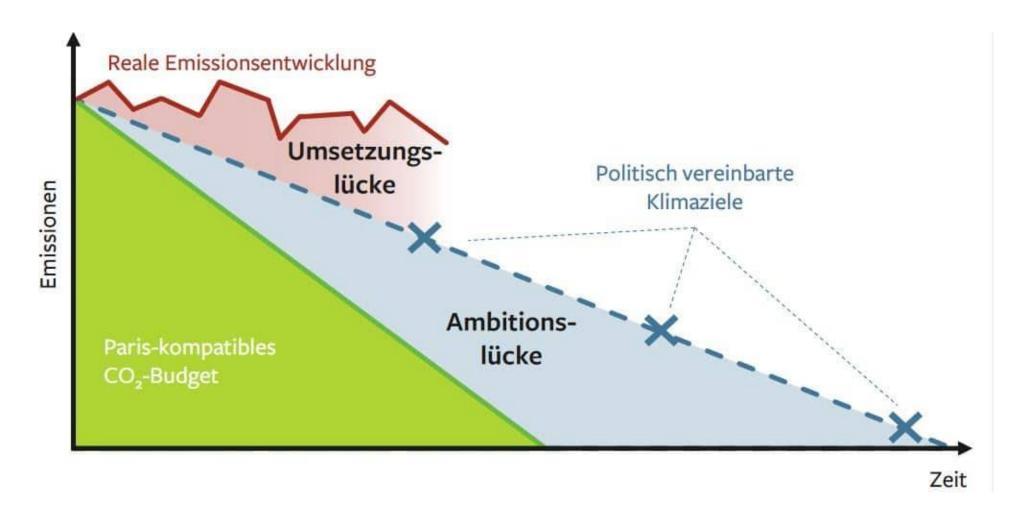
Solar-Rechner und weiterführende Links

- https://www.akkudoktor.net/waermepumpenrechner/
 - https://holzheu.shinyapps.io/Luft-WP-Altgaul/
- https://www.akkudoktor.net/mikrowechselrichter-datenbank/
- https://www.akkudoktor.net/pvtool-rechner/
 - https://pvtools.sektorsonne.de/
- https://lili.fortyone.ai/
- https://stromrechner.ibc-solar.de/
- https://solar.htw-berlin.de/rechner/stecker-solar-simulator
- https://solar.htw-berlin.de/rechner/
- https://www.verbraucherzentrale.de/wissen/energie/erneuerbare-energien/lohnen-sich-batteriespeicher-fuer-photovoltaikanlagen-24589
- https://www.test.de/Photovoltaik-Rechner-1391893-0/
- 60 min kostenlose Solarberatung: https://www.berlin.de/solarcity/solarzentrum/information/
- Anti-Verhinderungsstrategien: https://balkon.solar/news/2024/05/15/die-neue-strategie-zur-verhinderung-von-balkonsolar-auflagen/
- Neue Strategie der Versicherungen: https://taz.de/Versicherung-von-Balkonkraftwerken/!6007846/

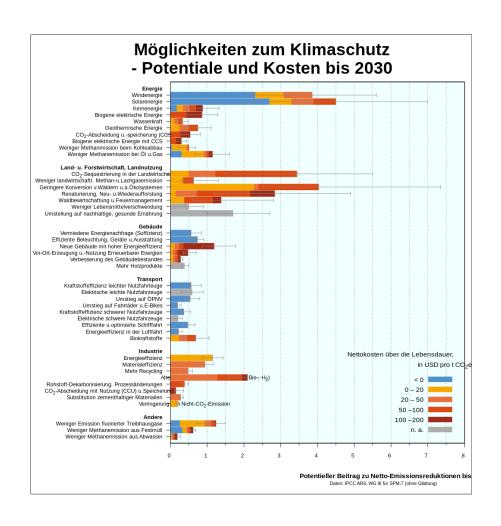

Lektüre: Balkonkraftwerke



Lektüre: Dach-Solar



69


Mortality Cost of Carbon, Emissionspfade, 1,5-Grad-Ziel, ...

www.packsdrauf.solar Graphik: Volker Quaschning

Climate Mitigation Options by Cost Efficency

www.packsdrauf.solar Graphik: IPCC AR6 70

71

Wechselrichter

Dreiphasiger Wechselrichter Leistungen ab 3 kW

speist in alle 3 Phasen des Netzes ein

Einphasiger Wechselrichter Leistungen bis 3 kW

speist in nur eine Phase des Netzes ein

Für Einbau oder Nachrüstung von Speicher direkt in Hybride Wechselrichter investieren

www.packsdrauf.solar Fotos: Ulrich Böke

Messung

- Der Messstellenbetreiber (normalerweise der Netzbetreiber) ist für Einbau, Betrieb und Wartung (Eichung) des Zählers zuständig
- Für diese Dienstleistung werden Zählergebühren fällig (Preisobergrenzregeln)
- Einbau in Zählerschrank

Moderne Messeinrichtung

- Einfacher digitaler Zähler ohne Fernsteuerung
- Für Anlagen bis 7 kW
- Messkosten: 20 € brutto / Jahr

Intelligentes Messsystem

- digitales Messsystem mit Fernauslese und Fernsteuerung (Smart Meter)
- Sofern verfügbar: Für Anlagen über 7 kW
- Messkosten: 20 € (bis 15 kW), 50€ (bis 25 kW), 120€ (bis 100kW) brutto / Jahr

Die gesetzlichen Regelungen findet man im Messstellenbetriebsgesetz. Dieses wurde kürzlich überarheitet

Neuerungen im Messtellenbetriebsgesetz 2023

- Fristen beim Einbau von Zählern: ab der 6-Woche nach Antrag auf Einbau einer Zähleinrichtung darf der Anschlussnehmer nun unter Einhaltung der allg. Regeln der Technik den Einbau durch einen fachkundigen Dritten auf eigene Kosten (Selbstvornahme) vornehmen.
- Ab 2025 müssen für alle Anschlussnutzer dynamische Stromtarife eingerichtet werden.
- Es reicht ein Smart Meter Gateway am Netzanschlusspunkt, auch bei mehreren Anschlussnutzern und mehreren EE-Anlagen (z.B. Balkonkraftwerke)

Mit den Messtellenbetriebskosten sind sowohl die Kosten für Einbau, Betrieb als auch Abrechnung des Zählers abgegolten und dürfen nicht erneut vom Netzbetreiber erhoben werden.

Gesetzlich vorgeschriebene Aufteilung der Kosten zum Messstellenbetrieb			
	Über 7 – 15 kW	Über 15 – 25 kW	Über 25 – 100 kW
Netzbetreiber	80 €	80 €	80€
Anlagenbetreiber	20 €	50 €	120€

Flachdächer

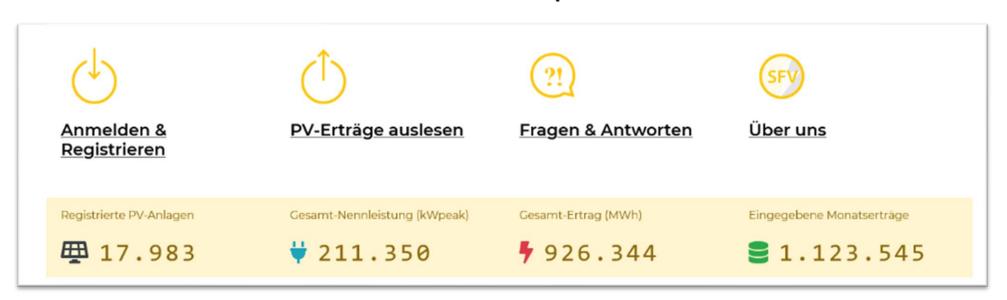
Ost-West Ausrichtung:

- + optimale Platznutzung
- + höherer Eigenverbrauch möglich, da höhere Erzeugung in den Morgen- und Abendstunden
- etwas geringerer Ertrag je Modul im Jahr

Süd Ausrichtung:

- + höherer Ertrag je Modul im Jahr
- weniger Module je Fläche, da Abstand notwendig um Verschattung zu vermeiden

Montage auf Flachdächern ist durch Beschwerung der Systeme ohne Beschädigung der Dachhaut möglich


www.packsdrauf.solar Fotos: Ulrich Böke 74

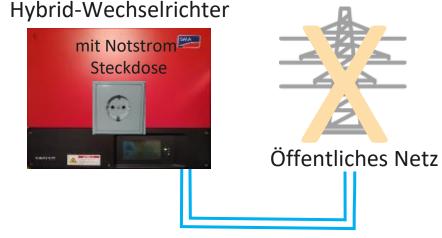
Ertragsdatenbank des SFV nutzen

- Unter www.ertragsdatenbank.de erreichbar
- Frei Verfügbare Datenbank zum Monitoren der eigenen Anlage
- Vergleich mit anderen Anlagen im eigenen PLZ-Gebiet

bundesweit · monatlich · spendenfinanziert

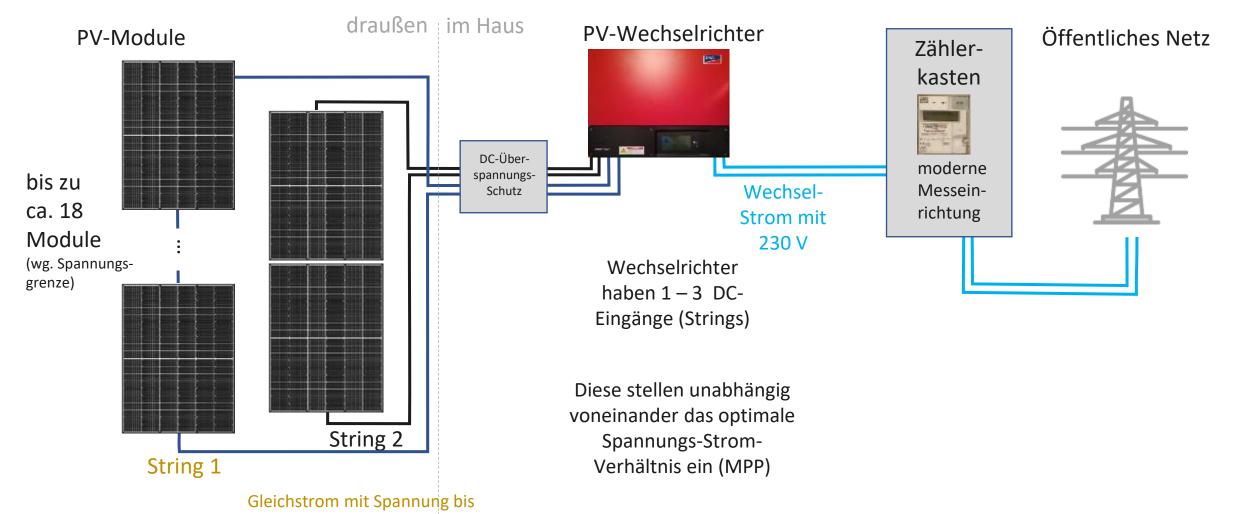
Batteriespeicher - Einspeisemanagement

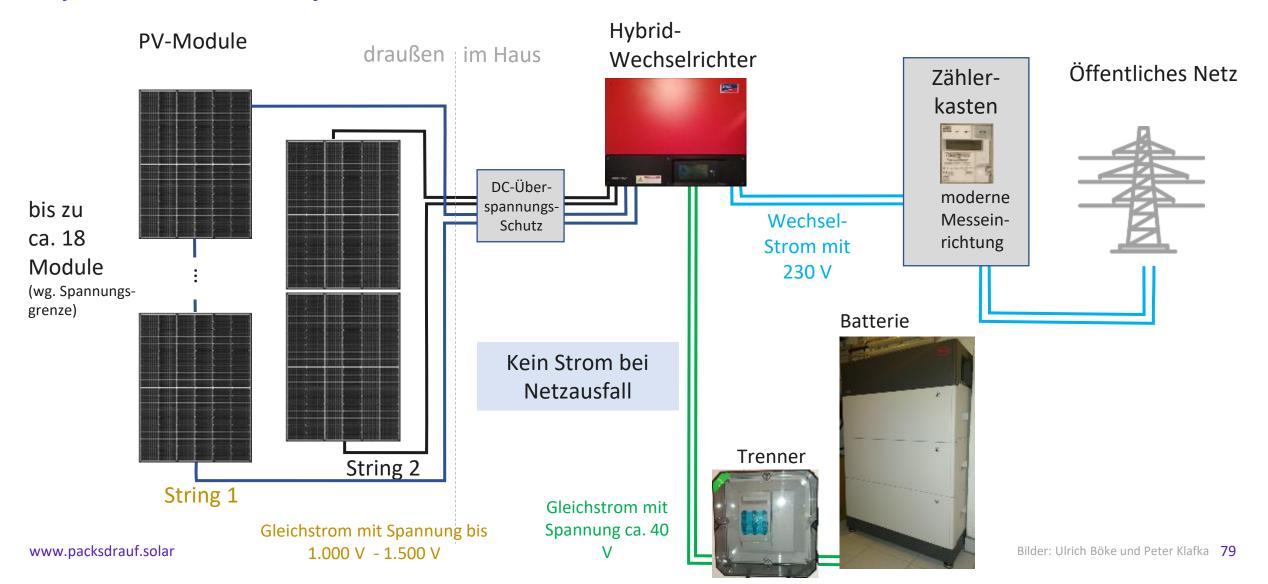
- Das Einspeisemanagement legt fest, mit welcher Priorität Solarstrom in einer Batterie gespeichert oder ins öffentliche Stromnetz eingespeist wird.
- Hybrid-Wechselrichter mit Batterieanschluss haben diese Funktion integriert.
 Sie kann aber auch durch ein separates Gerät realisiert werden.
- Die Priorität sollte sein:
 - Solarstrom im Haushalt oder Elektroauto verbrauchen.
 - Solarstrom in einer Batterie speichern, um ihn später verbrauchen zu können.
 - Solarstrom in das öffentliche Stromnetz einspeisen.


www.packsdrauf.solar Fotos: Ulrich Böke

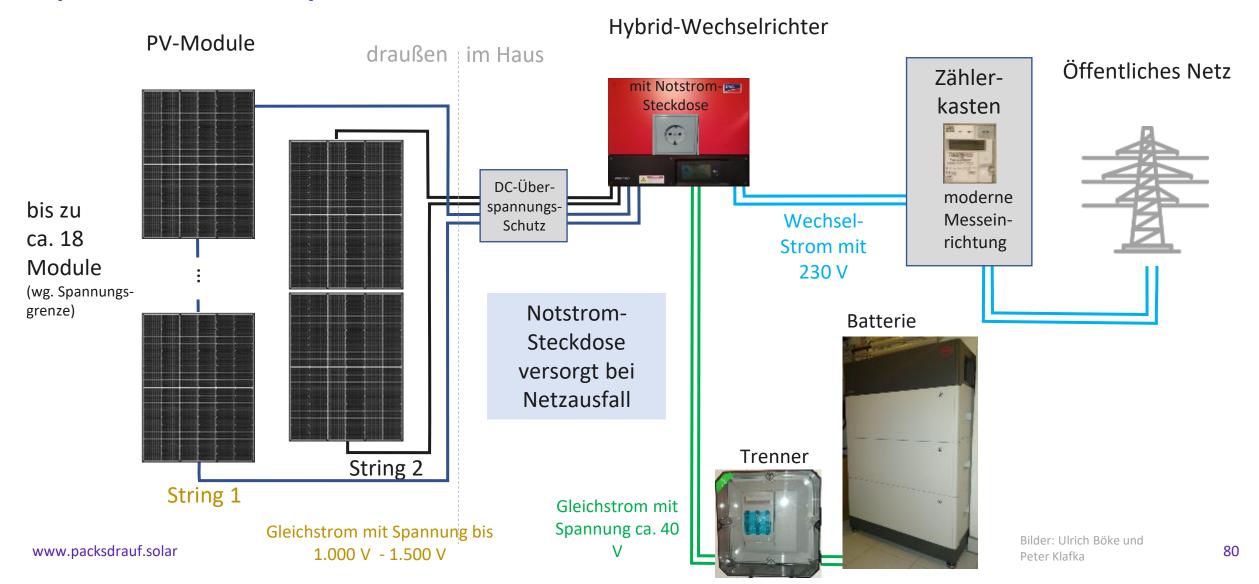
Sonderfall: Notstromversorgung

- Wechselrichter und Batterien brauchen für den Betrieb den Anschluss an das öffentliche Netz.
- Für Notstromversorgung (bei Netzausfall) sind spezielle Geräte oder Zusatzkomponenten erforderlich.
 Stichwort: Inselfähigkeit
- Versorgung einer Notstromsteckdose am Wechselrichter, oder Versorgung komplettes Haus oder ausgewählter Stromkreise möglich.
 Wichtig: Leistung der aktiven Verbraucher darf Leistung des Wechselrichters nicht überschreiten.



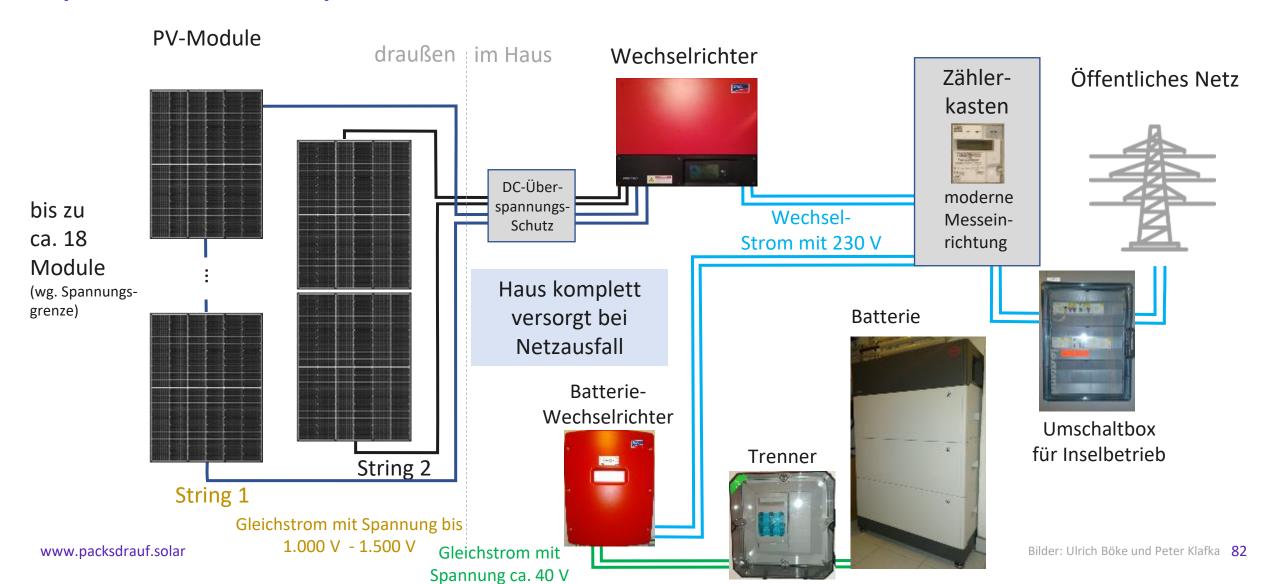

Komponenten einer PV-Anlage

1.000 V - 1.500 V



Speicher mit Hybrid-Wechselrichter

Speicher mit Hybrid-Wechselrichter und Notstrom



Speicher mit Hybrid-Wechselrichter und Inselbetrieb

Speicher mit separatem Batterie-Wechselrichter

